Hem Molntjänster Molnkravet - vad, varför, när och hur - tekniskt avsnitt 3 avskrift

Molnkravet - vad, varför, när och hur - tekniskt avsnitt 3 avskrift

Anonim

Eric Kavanagh: mina damer och herrar, hej och välkomna tillbaka till TechWise. Jag heter Eric Kavanagh. Jag kommer att vara din moderator för avsnitt 3. Detta är en ny show som vi har designat med våra vänner från Techopedia, en väldigt cool webbplats som uppenbarligen fokuserar på teknik, och naturligtvis, här på The Bloor Group, fokuserar vi ganska mycket på företag teknologi. Så företags mjukvara av alla slag, och hela TechWise-formatet utformades för att ge våra deltagare en riktigt bra hård titt på ett specifikt utrymme. Så vi har gjort Hadoop till exempel, vi gjorde analyser i den sista showen och i denna speciella show, vi pratar allt om moln.


Så det heter "The Cloud Imperativ - What, Where, When and How." Vi ska prata med ett par analytiker idag och sedan tre leverantörer. Så, Qubole, Cloudant och Attunity är sponsorerna för dagens show. Ett stort tack för dessa människor för deras tid och uppmärksamhet idag och ett stort tack, naturligtvis, till er alla där ute. Och kom ihåg att du som deltagare i dessa shower spelar en viktig roll. Vi vill att du ska ställa frågor, engagera dig, bli interaktiv, låt oss veta vad du tycker, för uppenbarligen är hela syftet med showen här att hjälpa er att förstå vad som händer där ute i världen av molnberäkning.


Cloud Imperativ Deck

Så låt oss gå rätt längre. Första värden, din värd där uppe, Eric Kavanagh det är jag och sedan har vi Dr. Robin Bloor som ringer in från en flygplats, och vår goda vän Gilbert, Gilbert Van Cutsem, en oberoende analytiker, kommer också att dela några tankar med dig. Då kommer vi att höra från Ashish Thusoo, VD och medgrundare av Qubole. Vi kommer att höra från Mike Miller, chefforskare på Cloudant och slutligen från Lawrence Schwartz, VP för Marketing at Attunity. Så, vi har en hel del innehåll uppradat för dig idag.


Så molnet - edikt ovanifrån - detta är ett koncept som kom till mig häromdagen när jag tänkte på detta. Egentligen är molnberäkning bara enormt i dag. Jag menar, det är verkligen ganska fascinerande att titta på utvecklingen av det här och ett av exemplen som jag ofta ger är i webbsändningstekniken själv. Naturligtvis hörde er av er som ringde in tidigt några intressanta tekniska utmaningar. Det är ett problem med molnet är att det ändras, format ändras, standarder ändras, gränssnitt förändras och ibland när du försöker ansluta två olika områden tillsammans får du vissa svårigheter, du får problem. Så detta är faktiskt en av sakerna att oroa dig för med molnberäkning. Var försiktig med arkitektur! Du kan se det vid den senaste punkten.


En av de saker som vi gör, precis som en sidoanteckning här, för vår webcast, vi har en separat leverantör av telefonkonferenser. Sedan använder vi WebEx. Vi använder inte WebEx-ljudet för att uppriktigt sagt, en gång använde vi WebEx-ljud för år sedan och det kraschade och brände på ett mest obehagligt sätt. Därför är vi inte villiga att löpa den risken igen. Så vi använder vårt eget ljudinspelningsföretag som heter Arkadin som ett faktum och vi sy ihop i realtid alla dessa olika lösningar. Och tanken är att vi sedan skulle kunna skicka e-post till dig med en separat e-postapplikation med bilderna, till exempel om WebEx skulle ha kraschat, vi ber dig alla att ringa in, vi skickar e-post till bilderna och bara går igenom det mer eller mindre utan WebEx-typ av miljöer. Så, hur du kan komma runt sådana problem, men dessa typer av problem är överallt.


Men det finns många fördelar med moln. Uppenbarligen är det en låg inträdesbarriär, du kan se på affischbarnet för molntjänster är naturligtvis salesforce.com, som helt enkelt revolutionerade affärer, speciellt försäljningskraftsautomation. Men, då har du saker som Marketo och iContact och Constant Contact och Sailthru och, godhet nådig, det finns massor av verktyg när det gäller marknadsföring och försäljningsautomation, men det är inte allt som finns. HR tar det till hela molnspelet, analytik är i molnspelet. Titta på det lilla kända företaget där ute Amazon Web Services, vad de gör med cloud computing - det är bara massivt. Och jag hörde ett bra citat häromdagen från en kille som vi gör mycket arbete med David som nu är över på Cisco, i själva verket företaget som köpte WebEx. Inte säker på att de har investerat så mycket som jag skulle vilja att de skulle ha i WebEx, men det är inte riktigt mitt beslut, eller hur? Men han är på Cisco i dessa dagar och han hade ett väldigt roligt, bara pittigt citat, och det är, "det finns inte ett moln, det finns många moln, " och det är exakt rätt. Det finns massor och massor av moln där ute. Faktum är att varje molnleverantör är sitt eget moln. Så en av utmaningarna i dag är att ansluta moln, eller hur? Om du är säljare, skulle det inte vara trevligt att ansluta direkt till iContact och Constant Contact och till LinkedIn, till exempel, och kanske till Twitter och andra miljöer, andra moln där ute fixade bara affärslösningar som är vettigt för dig och ditt företag.


Så det här är några frågor att tänka på, men molnet är här för att stanna. Bara veta att om detta är lokal programvara här för att stanna. Så, vad har vi att räkna ut i företaget eller några små till medelstora företag, hur definierar du din arkitektur och underhåller den så att du kan utnyttja molnet utan att skapa en jätte någon annanstans utanför din kontroll? Så uppenbarligen utvecklades hela datalagringsindustrin kring ett behov av att konsolidera kritisk information för att analysera den informationen och fatta bättre beslut.


Nåväl, nu har Amazon Web Services Redshift. Det är en av de största webbsändningarna vi någonsin gjorde var med Redshift. Det är en ganska stor sak. De förändrar dynamiken, de förändrar prisstrukturerna. Du kan se när din prissättning går ner på traditionell licensiering av företagsprogramvara delvis på grund av molnberäkning och delvis eftersom dessa människor är ute och sänker priset och sätter press på priset. Så det är goda nyheter för slutanvändarna. Det är något att tänka på för alla där ute som försöker använda några av dessa tekniker. Så det är något att tänka på och vi kommer att prata om det idag på showen.


Så analytiker Dr. Robin Bloor kommer att bli vår första analytiker för dagen. Så jag ska gå vidare och trycka på hans första bild och överlämna tangenterna till honom. Robin, jag tror att du är här någonstans, där är du. Och med det kommer jag att dela ut det, och golvet är ditt!


Dr. Robin Bloor: Okej, Eric. Tack för introduktionen. Jag stötte på … för ett par dagar sedan stötte jag på en undersökning av konsumenterna, som faktiskt ställde frågan - tror du att stormigt väder stör störningen i molnet? Och mer än 50 procent av dem sa ja. Jag tänkte bara att jag skulle låta dig veta att det inte gör det, om du är en av de som tror på det. Och då, det är lite som att tro att du vet att när du har snö i tv är det för att det snöar ute.


Cloud, du vet, en av sakerna är att den är typ av, du vet, en viktig, om du gillar, enkel detalj av molnet är att molnet faktiskt är ett datacenter på ett eller annat sätt, eller någon annan molntjänst är ett datacenter. Det enda är att det är ett annat datacenter än det traditionella molnet. Så jag skulle prata i överblick om molnet så att du som säkerhetskopia för att gå mer i detalj om molnanvändning eftersom det inte är någon mening med att täcka samma mark.


Så den första typen som jag skulle vilja göra är att molnet är en tjänst, vet du? Och en av de saker som faktiskt händer på grund av molnberäkning är att det finns en … tja, jag kallar döden för varumärken, en hel serie mjukvarumärken hade väldigt mycket makt och fortsätter att ha krafter inom företags computing. När du väl kommer till molnet har de inte mycket makt längre, vet du? När du köper en molntjänst bryr du dig om applikationen, naturligtvis bryr du dig om servicenivån som molnet kommer att ge dig, du vill inte att molntjänsten misslyckas ofta, du bryr dig om användningskostnader och du bryr dig om dessa saker eftersom det här är en tjänst, men det du inte bryr dig om är att du inte bryr dig om vilken hårdvara den kör på särskilt, du bryr dig inte om vad nätverkstekniken är, du bryr dig inte vad operativsystemet det kör är, du bryr dig inte vad filsystemen är, du bryr dig inte ens vad databasen är och som faktiskt används specifikt av en given databastjänst ur molnet, vet du? Och effekterna av det på ett sätt är att molnet är en väldigt många programvarumärken som inte har något verkligt värde i molnet eftersom du vet att du går in i molnet på ett eller annat sätt för något som är en tjänst och inte längre produkt. Så jag trodde att jag kunde göra ett par bilder av skäl att inte använda molnet, du vet, och det här är alla, om du vill, du vet, blodiga enkla, uppenbara skäl, men någon var tvungen att ange dem, så, jag trodde jag skulle göra det.


Så, skäl till mig … att inte använda molnet - om de inte kan tillhandahålla den typ av data och processstyrning du vill ha dem, vet du, då uppfyller det helt enkelt inte dina kriterier. Om de inte kan ge dig den prestanda du vill, kommer den inte att uppfylla kriterierna. Om molnet ger dig flexibiliteten när det gäller hur du kan flytta saker, kommer det inte att uppfylla ett kriterium. Det är bara uppenbara orsaker till att speciella molntjänster inte passar många människor där ute än att göra företagsdatorer.


Du kanske inte gör det eftersom du kan göra det billigare. Molnet är inte alltid det billigaste alternativet. En del människor tycks tro att det ofta är ett billigt alternativ, det kommer alltid att bli billigare, det är inte alltid billigare. Och den andra saken är att om du tar en applikation från ett moln, det inte integreras bra med det du gör, då kommer du förmodligen inte att gå framåt med det och det är, du vet, skäl att vända dig bort .


Här är skälen att anta. Du vet, en av de saker du kan göra i molnet, ganska mycket skottbeständig, är prototypaktivitet. Om du antingen kan prototypa i molnet och implementera i datacentret är det helt livskraftigt och det finns stora mängder människor som gör det. Du kan ladda upp arbete från datacentret med icke-kritiska applikationer eftersom de förmodligen skulle kunna hitta någon slags molntjänster som uppfyller din servicenivå till de okritiska sakerna. Och du kan ladda upp specifika applikationer som salesforce.com och liknande erbjudanden till det, du vet, standardapplikationerna. Alla slags har en kapacitet inom det området och fältet är inte specialiserat och, du vet, det traditionella … vad som finns i molnet kommer förmodligen att bli det du går med.


Så det sista jag ville säga, det är en ganska intressant sak, egentligen, när du faktiskt letar efter molnet, är ett sätt att förstå precis som en serie skalfördelar. Hela poängen är att du vet att du driver ett datacenter där ute och du kommer att ringa in till det datacentret någonstans och använda det och därför skulle det vara bättre, det är bättre i huvudsak billigare än om du gör det själv. Så, du vet, det handlar egentligen om stordriftsfördelar.


Molnleverantörerna, de väljer datacenterplatsen och det bästa stället att hitta datacentret ligger precis bredvid en kraftstation, och särskilt precis intill en billig kraftstation. Så ett kraftverk norrut som råkar vara vattenkraft eller något liknande. Det är normalt sett det billigaste, vet du? Du kan faktiskt hitta datacentret där och det kommer vara lättare för dig. Det är billigare att anställa människor på sådana platser än i centrum av New York eller San Francisco. Du kan standardisera hela anläggningen när det gäller luftkonditionering och ström. Det kommer att spara dig mycket eftersom det betyder att du kan ge ut en hel byggnad till det och det är vad exakt alla molnoperatörer gör. De standardiserar på nätverkshårdvara, de standardiserar på datormaskinvaran som de använder, vanligtvis varor x86-kort, ofta kommer de att montera dem själva. Så, vissa bygger till och med upp hela saken. De kommer att använda Amazon-programvara som de kan eftersom det faktiskt inte betyder några kostnader för att anta den. De kommer att standardisera i all programvara. Så de kommer aldrig att uppgradera någonting förutom att uppgradera samtidigt. De kommer att organisera stödet. Så de kommer att betala stöd till många olika leverantörer som bara har sin egen supportfunktion. De kommer att ha uppskalnings- och utskalningsförmåga i den meningen att de kommer att köra mer än du någonsin skulle driva den typen av tjänster och de kommer att övervaka deras användning på ett sätt som de flesta datacenter inte kan för att de är typ av att bara köra en standardiserad tjänst, men de flesta datacenter kör en hel serie saker. Och det är vad molnet egentligen handlar om, och som på ett visst sätt kan definiera om det intresserar dig eller om det inte är för någon speciell applikation. Så, du vet, min typ av grova tumregel är att där stordriftsfördelar är möjliga kommer molnet att ta över förr eller senare. Men hur innovation och flexibilitet och mycket specifika saker som du går själv kan verkligen inte. Molnet kommer alltid att bli näst bäst.


Okej. Låt mig skicka tillbaka det till Eric eller till Gilbert.


Eric Kavanagh: Okej, Gilbert, jag ger dig nycklarna här till WebEx. Står fast vid. Klicka bara var som helst på bilden och använd pilen nedåt på tangentbordet.


Gilbert Van Cutsem: Jag tror att jag har kontroll.


Eric Kavanagh: Du har kontrollen.


Gilbert Van Cutsem: Okej. Nu kör vi. Molnkravet - himlen är gränsen, är det en urban legend, eller vad skulle du tänka på det? Det här är bara några få samtal och saker att tänka på.


Först från "vad" -fronten, du vet, som vi alla vet, jag tror inte att någon tvivlar på detta. SaaS-ification är här för att stanna eftersom programvaran faktiskt aldrig dör, den flyttar bara till molnet, eller hur? Jag tror att jag sa detta tidigare i den tidigare utgåvan av detta. Å nej, eller Eric sa det för mig i en tidigare utgåva. Och jag tror att det uppenbara skälet, och det här går tillbaka till Robin på ett sätt, är att företagets tidslinje är ganska lätt på företagens sida. CMO behöver alltid allt och han behöver det nu. Så, han handlar allt om att marknadsföra. Så sorgligt, det är en bra ursäkt för det på ett sätt för honom. CIO är emellertid lite nervös för SaaS och moln eftersom du vet, hela elasticitetsproblemet betyder att det som går upp också måste komma ner. Du måste vara redo att skala ut, men också att skala tillbaka. Så han är lite nervös för det. Ekonomidirektören är inte nervös, inte mer än vanligt, men han går som "Hej, det här är … hur mycket kommer det att få oss tillbaka?" Det är, du vet, den ökända investeringar kontra OPEX-diskussionen. Det är ganska gammalt, men det är väldigt viktigt i den här världen. Och sedan, naturligtvis, är VD. Han säger: "Åh! Riskreducering! Killar, ni är alla glada, men är vi redo för det här?" Eftersom risk är vad han tänker på.


Så, vad är risken? Bara några tankar, eller hur? Vi har att göra med tankeledning, men på en oavslutad väg eftersom det här är ganska nya saker, allt ganska nyheter. Vi har inte så mycket datapunkter, om du tänker på det. Och så, vi, även på risikosidan, måste vi ta itu med ombordstigning, du vet, människor som undertecknar avtal går som "Ja, det är vad vi vill, vägen att gå", de registrerar sig, men då det är inte tillräckligt. Du måste, du måste ombord människor och det, kommer du ihåg filmerna? Tillbaka i översättningen, det är lite av, du vet, vad ombordstigning handlar om. Och då, som Robin just sa, du vet, är det inte nödvändigtvis att försvinna direkt. Så du måste integrera båda världarna. Det är en hybridvärld. Och så, hur ska du göra det? Det är 80-20, 80-20-regeln Pareto, är det okej? Är det bra nog? Och sedan skräp in / skräp ut när du ansluter systemen. Är det okej? Är det hållbart? Eftersom du vet att du kommer att migrera, ska du kartlägga ditt företag till rotsystemet, hur ska du göra det? Och sedan är den sista, som jag tycker är oerhört viktig, multitenantiska arkitekturer, vilket innebär att datasekretess på dina egna data, ibland kallas det "äga dina egna data", blir mycket viktigt, vet du? Hundra personer som använder samma system, en databas sitter under systemet, vem ska se mina data? Bara jag, eller hur? Är du helt säker på det? Datasekretess, datasäkerhet hjälper experter. Om du är CIO, kommer det tillbaka "jag" till CIO eftersom du nu ansvarar för information. Det är ganska intressant om du är CIO.


Så låt oss prata lite om "varför". Så det strategiska avsikten med allt detta är mycket, väldigt enkelt, tror jag. Om du är en abonnent finns det marknadspress. Om du är en leverantör finns det konkurrenspress. Om du har kamrater finns det grupptryck. Om du är en abonnent är det bara marknadspsykologin. Alla vill gå till molnet, SaaS eller vad du än kallar det, moln SaaS, vi behöver alla och vill åka dit. Och orsaken är vanligtvis ekonomisk. Det är den uppenbara orsaken, men om du tänker på den ekonomiska aspekten kommer du in i det jag kallar förslaget-mot-budget-paradoxen. Kommer du att få ett prenumeration, heltäckande system, $ 50, $ 500 i månaden eller något liknande, eller drömmer du om användning baserat så att du bara betalar för det du verkligen använder? Och så, hur kommer det att fungera, användningsbaserat, konsumtionsbaserat? Ska du mäta alla sakerna? Det kommer förmodligen inte att hända direkt. Så du kommer att sluta med en hybridmekanism, det vill säga jag betalar 200 i månaden och kanske ibland 500 för att jag måste betala för extraförbrukningen. Retainer Plus, det kommer antagligen att gå vägen att gå.


Men det finns också något som jag kallar den dolda avsikten på den breda fronten, och jag tror att, du vet, detta är absolut verkligt. Det är förändringen av kontrollen, det är CIO kontra CMO, maktskiftet eller maktkampen mellan CMO, "Jag vill ha allt och jag vill ha det nu", och CIO, som säger "Hej, det här är allt om data, du vet? Jag brukade köra, för 20 år sedan handlade det om hårdvarussystem. För tio år sedan handlade det om applikationer. Idag handlar det om uppgifterna. Och eftersom jag är CIO - information - det handlar om mig. Jag har kontroll. " Så det är ett slags maktförskjutning eller maktkamp som jag tror att pågår just nu mellan dessa två, CMO och CIO.


Så till slut är detta allt så ungt att ingen verkligen vet om vi är i innovatörstypen miljö eller i den tidiga adoptertypen miljö. Jag tror att vi är i den tidiga adopterartypen av miljön, inte den tidiga majoriteten, bara den tidiga adopteraren, men, du vet, typ av halvvägs. Och så, du vet, för kunden, slutanvändaren, abonnenten, det här handlar om att få ett försprång eftersom den gemensamma organisationen av företaget vill ha ett försprång, eller hur? Och så är det viktigt att inte sluta med det vi kallar minskande avkastning. Det begränsande försprånget kan leda till minskad avkastning. Det är därför det är oerhört viktigt att du vet att du litar på parterna som kan se till att en enstaka misslyckande inte är en fråga och att datasäkerhet respekteras. Så det kommer att kräva en hel del förändringshantering. Och så till slut - nästan gjort, det här är den sista bilden - hur ska vi göra det? Hur går övergången till molnet, övergången till SaaS, du vet, sömlös och enkel? Tja, genom att göra två saker: uppmärksamma - tillhandahålla - riktigt viktigt, och ombordstigning, ännu viktigare.


Eric Kavanagh: Okej …


Gilbert Van Cutsem: Och i så fall är himlen gränsen. Tack.


Eric Kavanagh: Ja. Det var bra. Jag älskade de mycket provocerande idéerna, jag gillar det sätt som du gick sönder. Jag tror att det är mycket meningsfullt. Och låt oss gå vidare och trycka på Ashishs första bild och jag överlämnar nycklarna till WebEx till dig, Ashish. Okej Fortsätt. Klicka bara var som helst på bilden och använd pilen nedåt på tangentbordet. Varsågod.


Ashish Thusoo: Okej. Tack, Eric. Hej folkens, det här är Ashish och jag ska berätta om Qubole. Så bara för att starta, Qubole, väsentligen ger det stora data som en serviceplattform. Det är en molnbaserad plattform värd i Amazon-molnet och Google-molnet och vi tillhandahåller teknik som Hadoop, Hive, Presto och ett gäng andra jag ska prata om, allt på ett nyckelfärdigt sätt så att våra kunder i princip kan komma ut ur all förvirring i världen av stor datainfrastruktur eller ta slut på att faktiskt driva denna infrastruktur och verkligen fokusera mer på deras data och de transformationer som de vill göra på sina data. Så det är vad Qubole handlar om.


När det gäller de konkreta fördelarna, ett sätt att tänka på Qubole, vet du naturligtvis att det är en nyckelfärdig, självbetjäningsplattform för big data-analys och big data-integration byggd runt Hadoop, men mer grundläggande, vad det gör är att du vet, för alla big data-motorer som Hadoop, Hive, Presto, Spark, Chartly och så vidare, och så vidare, det ger alla fördelarna med molnet till dessa big data-motorer och några av de nyckelmanifester som det ger från molns perspektiv är, du vet, att göra infrastrukturen anpassningsbar och genom att anpassa, menar jag både smidiga som flexibla arbetsbördan som körs på någon av dessa motorer och också gör dessa motorer till mycket mer självbetjäning och samarbete i den meningen att, du vet, Qubole tillhandahåller gränssnitt där du kan använda den här tekniken inte bara för din utveckling eller, du vet, utvecklarorienterade uppgifter, men även dina andra dataanalytiker kan också börja få fördelarna med dessa tekniker till en självbetjäning gränssnitt.


Vi får mycket, du vet, när det gäller just detta, du vet, webinarium, du vet, detta är ett av våra perspektiv på vilka fördelar med molnet som Qubole ger till big data. Så om du bara gör en jämförelse mellan hur du kör, säger, Hadoop och låter det arbetsbelastning i en förinställning, i en förinställning, tänker du alltid i termer av statiska kluster, du vet, fixar du din kluster, du kanske storleksanpassar dem till din högsta användning och du håller dem där och sedan om du måste ändra dem måste du gå igenom en hel process med upphandling, distribution, testning och så vidare. Qubole förändrar att genom att skapa kluster helt på begäran är våra kluster helt elastiska, vi använder föremålen lagrade från molnet för att faktiskt lagra data och klustren kommer upp och, du vet, de kommer upp på grundval av efterfrågan som genereras av användarna och de försvinner när det inte finns någon efterfrågan. Så detta gör den infrastrukturen så mycket mer smidig och flexibel och anpassningsbar till dina arbetsbelastningar.


Ett annat exempel på flexibilitet är, du vet, idag kanske du har skapat dina statiska kluster här, du vet, med en viss arbetsbelastning i åtanke och om dina arbetsbelastningar förändras och din infrastruktur nu måste uppgraderas, kanske du behöver mer minne på dina maskiner och sådana saker. Återigen, du vet, att göra detta på molnet genom till exempel Qubole, gör det enkelt. Du kan alltid hyra nya, olika typer av maskiner och, du vet, få kluster, 100-nod-kluster igång på några minuter i motsats till veckor som du var tvungen att vänta på Hadoop i förväg.


Den andra viktiga saken som Qubole skiljer sig från i förväg är att Qubole huvudsakligen är ett tjänsteerbjudande, så att alla verktyg och infrastruktur som du behöver för att integrera tjänsten, behöver du inte … oavsett var du vet, det är främst du tar programvaran, du måste köra den själv, du måste integrera den själv och göra dessa alla dessa fördelar, alla fördelarna med SaaS-modellen är en ledtråd till, du vet, hur Qubole erbjuder big data i motsats till att köra Hadoop on-prem själv.


Denna bild täcker generellt vår arkitektur. Vi är naturligtvis baserade på molnet, vi lagrar våra data om objekt i molnet i molnet, Google-molnet och Google Compute Engine eller Amazon Web Services. Vi tar alla Hadoop-ekosystemprojekt och runt det har vi utvecklat nyckel-IP kring automatisk skalning och självhantering, vi har gjort en hel del molnoptimeringar för att få dessa komponenttekniker att fungera riktigt bra i molnet eftersom, du vet, molninfrastruktur är mycket annorlunda än att bara köra saker på bara metall och en hel massa datakontakter för att möjliggöra att data flyttas in och ut från denna plattform. Så det jämför molnplattformen och det möjliggör att du vet att det är en nyckel … den viktigaste funktionen där är hur man gör all självbetjäning så att du inte behöver ha en stark … du don har inte ett mycket stort operativt fotavtryck när vi kör detta, men vi binder det tillsammans med vår dataarbänk om detta är verktyg för analytiker, om det här är verktyg för datastyring, om det här är verktyg för mallar och så vidare så vidare så att du kan ge fördelarna med denna teknik, inte bara för utvecklarna, utan även andra affärsanvändare och företaget. Och naturligtvis knyter vi också in denna molnplattform till verktyg som ni kanske redan använder om dessa är, du vet, användningsverktyg eller bara Tableau eller om de använder, du vet, mer datalager typ av produkter som Redshift och och så vidare.


Idag körs tjänsten i ganska stor skala, vi behandlar faktiskt nära 40 petabyte data varje månad nu över hela vår kundbas. Våra kluster varierar i storlek från 10-nod-kluster till 1500-nod-kluster och, du vet, när det gäller skalområdet som vi kan bearbeta och i stort sett, så vitt jag vet, kör vi förmodligen några av de största kluster på molnet när det gäller Hadoop och vi bearbetar till cirka 250 000 virtuella maskiner under en månad över våra kluster. Kom ihåg att vår modell är kluster på begäran, som har enorma fördelar när det gäller att minska dina operativa arbetsbelastningar samt förbättra din och så vidare och så vidare.


Slutligen, du vet, en av våra, du vet, detta är bara ett prov på hur Qubole har förändrats till olika företag. är ett exempel på vår klient. De var redan på molnet, de körde till exempel Elastic MapReduce på molnet, och dataanvändningen där var ganska begränsad. De skulle ha cirka 30 udda användare som kunde använda den tekniken. Med Qubole har de kunnat utöka detta till mer än 200 udda användare i företaget som har sett en utvidgning av stora datainvändningsärenden och det är verkligen förde, vet du, vad vi kallar definitionen av en smidig big data-plattform och att det har blivit riktigt centralt för många av deras analysbelastningar.


Så bara för att stänga, det var en kort grundare på Qubole. I huvudsak är vår vision hur vi gör företag som är mycket mer smidiga kring big data och i själva verket utnyttjar vi fördelarna med molnet och får dem att bära på big data-teknologier runt Hadoop så att våra kunder kan utnyttja fördelarna med agility och dessa fördelar av flexibilitet och fördelarna med självbetjäningskaraktär på molnet för att bli så mycket effektivare för deras databehov. Så jag stannar där och överlämnar det till Eric.


Eric Kavanagh: Okej. Det låter bra och nu ska jag överlämna det till Mike Miller från Cloudant. Mike, jag ger dig nycklarna just nu. Klicka bara på bilden, här går du. Ta bort det.


Mike Miller: Ser ut som om jag har nycklarna. Så jag ber om ursäkt. Jag tappade … Jag tror att jag glömde att skicka några teckensnitt med min presentation. Så förhoppningsvis kan du titta förbi det och föreställa dig att det är vackert. Men ja, det här är kul. Jag har en lång lista här, provocerande saker som jag hörde att jag skrev att jag är angelägen om att återvända till dig i panelen. Så jag ska försöka komma igenom detta snabbt.


Så jag ska börja med Cloudant. Cloudant är en databas som en tjänst, vår molnleverantör och faktiskt har jag inte ens den nya logotypen. Vi förvärvades av IBM för inte så länge sedan. Och så är vi … Jag kommer att prata om vår tjänst och särskilt fokusera på att försöka göra våra användare och kunder smidiga på ett ganska annat sätt än föregående talare.


Cloudant tillhandahåller databas som en tjänst och andra datarelaterade tjänster för personer som bygger applikationer. Så vi engagerar oss direkt med utvecklare och vi fokuserar på operativa eller OLTP-data i motsats till analysen som vi hörde från Ashish tidigare. Och poängen där verkligen, Cloudants hela värde, som kan delas upp för att hjälpa våra användare att göra mer och så det är att bygga fler appar, växa mer och sova mer. Jag kommer att prata om dem lite i detalj, men den allmänna idén här är att om du är en användare, du vet, du är i ett företag, bygger du en ny applikation, lägger till en funktion i befintlig applikation eller webb mobilstart bör du fokusera på din kärnkompetens. Och tidigare, kanske för upp till ett decennium sedan, skulle IT vara en särskiljande, du vet, konkurrens, ledsen, konkurrensskador till och med att köra en databas väl för att vara en konkurrensfördel. Lätt av att dessa dagar är över! Och så, hur vi verkligen försöker samarbeta med våra användare är att uppmuntra dem att använda sammansatta tjänster, modulära, återanvändbara, komposibla med idén att minska tiden till marknadsföring, ökar skalbarheten. Och den övergripande idén här är att molnet inte bara är, du vet, något nytt skjuts på användare, det är verkligen en marknad … det är en marknadsutveckling eftersom hur människor bygger applikationer, konsumerar applikationer, enheterna som de kör på och skalan på data förändras ganska radikalt under de senaste 5-10 åren. Det är verkligen betonade den befintliga applikationsarkitekturen för att bygga appar och bara hantera data och analysbelastningar offline. Och så öppnar det upp en hel ström av möjligheter.


Så Cloudant är en distribuerad databas som en tjänst och den var unik, tror jag, från början att den verkligen levererades med en mobil strategi från början, och jag kommer att prata om detta i detalj, men tanken är att skriva applikationer nu, du skriver inte för bara en plattform, eller hur? Du skriver för något jag kan köra en petabyte skala i molnet, det måste också kunna köra smidigt på ett skrivbord eller i en webbläsare och mer och mer vi ser saker, vi måste köra på en mobil enhet eller en semi-ansluten enhet eller bärbar enhet eller något vi kallar IOT. Och så tror jag att, du vet, applikationer som kan hantera bra och utnyttja de olika kunderna är oerhört konkurrenskraftiga på marknaden och vad vi försöker göra är att göra det enkelt för människor att enkelt API i den enskilda programmeringsmodellen att skriva, att hantera data i alla dessa olika enheter som har oerhört olika skala. The interesting thing is, you know, initial uptake in web and mobile, this is where we saw our big subtraction, but even now before the acquisition, we are seeing larger and larger number of enterprise users even in things as what I say as conservative as fidelity investments, right, working with a virtual building, a virtual safe deposit box. So, I think that this market is actually taken off much faster than even we had expected.


Let's talk about cloud and a little bit more and then turn it over. The idea here is that we really make it easier for you to build more and use a service like Cloudant to store the database state of your application and then move that to your different devices and keep things in sync and start contrast on how you build application, traditional stack or you have to buy servers like we heard about before, where you have to provision those and install license things. With Cloudant, we try to make easy. All the data that you will need, all the search services, database, etc. for your application can be acquired by signing up and getting a single endpoint URL and then starting to use that URL. The idea being that, that is a service that uses multiple indexes, some multiple technologies underneath, some proprietary and many open source, but we use them together in a way that the end developer or product team needs to build something. And so, database analytics, very different than they did it in inception where you would have, you know, rows and columns to store business ledgers, now we need to start JSON documents that generally happens over HTTP or using existing open-source APIs and then finally, we give you the things that database should do like a primary index and secondary indexes for, you know, retrieval and LTT and then driving application logic. But in addition, there is a wide range of things like search, geo-special and replication between devices that are very important. So, that's all provided underneath our API.


But, the really distinguishing thing that allows our users to grow and, for instance, why Samsung was one of our earliest and biggest customers is that, you know, Cloudant now is underneath cluster. Each cluster shares enough architecture of three to hundreds of nodes, but we run those in over 35 data centers now globally so that there is always a place for you to store your data within a millisecond of any other cloud provider or most existing data centers. So, one of the big early things that we are challenging in the cloud as well, is how do I split a hybrid architecture for my application service maybe here and my database servers maybe someplace else that will never work. They have to be on the same machine or in the same place. Well, the reality now is that by cobbling together different cloud providers, and this is something that we still do as an IBM company, you can make sure that your database is always within a millisecond of any other place and we take care of the peering agreements and just take down with the cost off the table, something that we worry about. So, Cloudant is really a database as a service, but you can think of it more like a CDN like for your database for data that changes, you know, on millisecond time scale.


And really, finally, I think the major selling point is if you build an application that's successful, you have to decide as an organization whether or not if you want to then grow the 24x7, 365 globally distributed, you know, operation team that it takes to run that at the large scale to whether that's something that now is commoditized as well. And so we focus very heavily on helping on-board new users and new customers and help them make the jump to the cloud and build architectures that use cloud analysts and works everything in a very coherent and scalable way so that is the end, you know, our users focus on building applications and not on surviving their own success.


And with that, I will just say thanks, skipped over some slides that were skipped and I will turn it back over to Lawrence.


Eric Kavanagh: That is fantastic. So, Lawrence, let me hand you the keys to the WebEx here. Just give me one second. There you are. Keys being transferred. Just click on that slide anywhere and use the down arrow.


Lawrence Schwartz: Great! Well, thank you for the handover and, you know, thanks to all the presenters today. Nice way to set everything up and there will be a lot of things to talk about it as I get through with the presentation here. So, again, I am Lawrence Schwartz. I run marketing over at Attunity and, you know, want to talk about some of the issues that we see and then some of the challenges in the space that we are in.


So, a quick overview and introduction to Attunity as a company and who we are. We focus on moving data. So, we talk about moving any type of data anytime, anywhere and enabling that for users. We are a public company based out of the Boston area, or near Boston, and when we talk about the cloud, we have some great relationships, we are part of the AWS network, a big data integration partner, and we have been close to them since the launch of their Redshift, even working with them before that. We have gotten some nice recognition for the work that we have done and as a company, we are in over 2000 places use Attunity, and we are in half of the Fortune 100 companies. So, we got some good experiences.


As you can see on kinda of the bottom of the slide here, a big issue is you've got data that's generated from all different types of sources these days from traditional, you know, CRM systems, all different places on the Internet, all the different places where data could start and then it has to go to places to be analyzed, to work with and to be looked at and we spoke if, you know, getting the data, you know, where it needs to be. So, I am gonna talk about our solutions that we do specifically on the cloud and when you think about that, often times the data, we have somewhere on-premise. So, besides having relationships with places like Amazon, we have very close working relationships with places like Teradata, Oracle, and Microsoft, all the places where data traditionally existed on-premise.


So, when you think about this, you know, and I think it was Eric who, you know, talked about on-boarding is the key to the whole process, right? I have been thinking about the issues to getting data on a system. Now, we are just some of the bottlenecks that exist today and when you look at the people moving data into a data warehouse or a database and to the cloud, we can see a lot of time is spent on what's called the ETL process, the extraction, transformation and loading of the data from where it resides to where it needs to go. If you think about getting the value on the data, that's not where you want to be spending your time and efforts, that's not the most productive area for a data scientist. And the flipside to that is this - very few people who are very satisfied with that process. It's no less than 20 percent. We really find that to be a big process. So, there is the real kind of painpoint bottleneck, if you will, in getting to the cloud and doing that type of on-boarding that people need to do and there's even, you know, real performance issues, you know, you could look at how do you get stuff into the cloud and if you want to get, you know, a couple of terabytes into the cloud, you could certainly ship it to the cloud and there are still places that do that with larger data sets, or a lot of the traditional methods, just don't have the performance to get their to do that. So, it's a real, you know, painpoint in the marketplace as people think about how do they get and how do they move onto the cloud.


So, if we step back in and look at what that means or why that's there and, you know, how this has come about, you know, both Eric and Gilbert talked about the fact that, you know, the data that's on there today, that exists today, you know, on-prem is here to stay, you know, cloud is here to stay. So, that integration becomes all the more important and often times, people fall back on the tools that they have to move over data. Again, there is a lot of ETL or traditional tools out there to kinda move data over in batches, but there's a lot of issues with that. People find that traditional ways of moving data are very time and resource intensive to set up. They often require a lot of scripting, even if they are autonomous in some way, a lot of people, a lot of manpower. There's so many sources and targets, particularly on-premise today to move it into the cloud, you know, all the systems I mentioned earlier, Oracle, Microsoft, Teradata, some managing that whole part of it. And then, you know, looking at the performance as it moves over, being able to have the tools to make sure everything is building quickly, there is a lot of thought systems that exist today aren't well built for that.


And then lastly, a lot of the way people think about moving data is kind of done in the batch process and if you are thinking about trying to do more in real time, that's not the most effective way, kind of using stale data that's not interesting to the organization. So, when you look at what Attunity does in this stage and how we think about it is, it's a different architecture that we are focused on, we really built this from the ground up and thought about when you have to go from Pentaho open-source database out to the cloud, how do you make sure that it's very easy and straightforward to do? So, that requires rethinking, how you do the monitoring and kind of set up for. It's making the whole thing just kind of a couple of clicks to get started. It's really thinking about the movement and optimizing the performance over the channel and working with just a wide variety of platforms because a lot of big organizations kinda have the best degree approach and a lot of different types of databases or data warehouses are ready in their environment. So, you have to think about it differently. You can't just do an extract, you know, dump the data out to some sort of information loaded somewhere. You have to kinda think about the architecture change, how you do the processing, do it more in memory and focus on a more performance version.


So, what does that mean and what does that look like? So, one key tenent to get to the problem with the cloud is, that things have to be easier to set up. You know, that screen there, it's just some screenshots from how we do it, but it's, you know, 1, 2, 3, kinda pick your source and target, pick what you want to do, you want to do one time CDC and then just go. It needs to be no harder than that, you know? I know we just, you know, saw the presentation from Mike and he talked about how easy it was for people to get started with Cloudant. It's the same type of thing, you have to deal with, kinda get going in a few steps otherwise you will start losing the value of it. When you think about the monitoring and control of it, there are some great companies out there, I know you're familiar with, like Tableau and others, who have done a great job in visualizing the end product of data and how to do it. But, you know, being able to visualize the movement process, the management or where's the data set on-premise, in the clouds and moving over, is there a lag, there is a vacancy. Having that viewpoint is critical and that's an important part of moving forward.


Another aspect that becomes important is the performance. You can't just rely on the standard FTP kinda two-way protocol that people have been using for years. As you move more and more data over, you have to have optimized, a file-channel protocol that is geared more towards, you know, one-directional movement most of the time after we think about how you break up tables and ship them out and move them over and you have to give people the flexibility to do that, otherwise you can't get it there in time and if you do that differently, think about it differently, you can get a 10x performance, but you have to rethink the technology.


And then lastly, as I mentioned earlier, you know, you have got a lot different places that databases exist today. So, you got to be able to work with all those and offer the widest kind of amount of support so that people can get onto the cloud. So, what does that mean for users and, you know, and those who are out there who wanted, two kind of quick cases of how people had challenges getting to the cloud, see the value, but then are able to do that if they have the right toolset.


So, one company that we work with, Etix, they do online ticketing, major provider in this space and I know Robin talked about data center offload is kind of a key in this case for the cloud. This is exactly what they are trying to do. They were trying to load and sync their data from Oracle on-premise to Redshift and do that in a timely fashion. And the interesting thing is, you know, go back to what Gilbert said, you know, it's really tough about on-boarding being an issue. They could see the intrinsic value of Redshift, they could see the cost savings, they could see all the advanced analytics that they quickly start doing that they continue for, they knew that value, but there was a roadblock to getting there. In this case, they looked at it and said, "Well, I see the value of Redshift, but it's gonna take them, you know, three months, development effort and time and, you know, maybe hiring the DBA and doing all this extra work to get there." So, there is a real block in the path to do it. Once you have the right toolset to do that, the right data integration capability to do that, they were able to go down from, you know, months of planning to literally just get going in minutes, and that's again lowering that barrier of getting people onto the cloud, we need to have the right capabilities to deliver on the promise.


The last, you know, slide I have here, and kind of another use case is, you know, we've worked with other companies, Philips, you know, well known in many spaces, we work with their health-care division and again, they were trying to go from an on-premise source over to Redshift, in this case SQL Server, and they knew the value, they knew all the analytics, they could do on it and they had done some testing on it, but they saw that without having the right tools, this is something that was gonna take them, you know, weeks and they had been spending actually weeks spinning their wheels and trying to get things moved over once they had the right tools that simplify, get it moved over quickly, they were able to go down and start loading in less than an hour, you know, over 30 million records. So, the real time went from couple of months to about two hours for them. And then they were able to do the things that they wanted to do. They didn't have to focus on the data loading, they could focus on the operational support. They got a much better matrix for all these care, cost and operations. So, you think about the whole challenge, you know, we design that spaces, enabling the data movement and now more than ever with the cloud when you think of it being kind of a remote place to pick your data, you know, this becomes an area that, you know, more and more people need to solve, to take advantage of what's out there. So, that's an overview of what we do and with that I will pass it back to you, Eric.


Eric Kavanagh: Okay. That sounds great. We've got a good amount of time here. We'll go a bit long to get to some of your good questions, folks. So, feel free to send your questions and I've got a few questions myself.


Lawrence, I guess I will start off with you. You guys have been in this space of kinda supercharging the movement of data for a while and you have been watching the cloud very carefully and I've really been kinda surprised at how long it's taken major enterprises, Fortune 1000 companies to fully embrace cloud. I mean, there are, of course, pockets of severe interests, let's call it, in large organizations, but as a general rule, there's been a bit of a reluctance that is only starting to wane in the last year or so, at least from my perspective, but what do you see out there in terms of cloud adoption and readiness of the enterprise to use cloud computing?


Lawrence Schwartz: Sure, I think you are right. It has been a significant change and it's certainly taken time, you know, they have that joke about, you know, that successful - overnight sensation - or really overnight success, that really takes years in the making, and that's been true for the cloud, right? It's… you have seen that kick in the last year, but it's due to all the hard work of a lot of players like Amazon who have been doing this for years, you know, to get the service adopted, the kind of, you know, prove the metal and there's, you know, failures and problems to give the diversity and flexibility that they have, that's something that Redshift offers. So, I think the maturity has gotten there, the confidence has gotten there, you know, the… I think it's infiltrated into a lot of companies through small areas, you know, small use cases, small trials, kind of outside that kinda IT control and with that, you know, those successful kind of periphery projects have proven now, there's now more of a willingness to have the conversations about how that spread. And frankly, you know, there's been additional tool that has, you know, have also come out to make these easier, like what we do and, you know, there is that, not just move the data, but show the value of BI in the cloud, and showing that.


So, it's, in one way, it's an overnight or a big uptick in the last year, but a big part of that's been all the hard work of building up to that. So, now we as a company see a lot more adoption. It's as a business for what we do, it's grown quite a bit and the cloud, you know, we do a lot of on-premise to on-premise movement. Now, cloud shows up in a lot of the conversations as, you know, real business cases, real offloading cases out where a year ago was certainly, you know, just more exploratory. Now, they have got real projects to move. So, it's been nice to see that movement.


Eric Kavanagh: Okay. Bra. And Mike Miller, you had mentioned that you heard a couple of provocative statements that you wanted to comment on, so, by all means, what do you find interesting or what do you wanna talk about?


Mike Miller: Oh, I think Robin, he made a point, his second-to-last slide contrasting where innovation counts. The cloud will always be second best and I'd love to hear a little bit more about that because in my mind, if I was thinking about building, you know, an application or some new service, it's hard for me to think that my organization, no matter what they are, really wants to go engineer-to-engineer with Google, Amazon, IBM, Microsoft. So, I think maybe I misunderstood his point with that.


Eric Kavanagh: Interesting. Robin, Mike has thrown down the gauntlet. Vad tror du?


Dr. Robin Bloor: Well, I mean the point here is that there are a number of situations that I've come across which… where people have gone into the cloud and walked back out and the reason they walked back out was, you know, when it came to actually having emotionally, this was performance driven, but the performance was actually the crux of the application is being built as they couldn't get the low latency they wanted and the cloud was of no use to them. And, you know, the situation was that, you know, actually going into the cloud, even if they were given the ability to measure behavior of the networks for them in the cloud and that workloads in the cloud with something they had absolutely no control over, and because of that, they couldn't create the tailor-made services that they were looking for, and that's a performance edge. I don't think there's anything in terms of, you know, coding that's going to be constricted, what you can do in the cloud. It's service level, it's a constriction… if that's part of where your critical capability is going to be, then the cloud is not going to be able to deliver it.


Mike Miller: Right. The… So, I appreciate that clarification. I do agree, actually, that transparency is one of the big things that here as desire right now from users across many different providers. So, I think you raised a very fair point. When it comes to performance, I think that traditionally it has been very hard to, you know, to go to a cloud provider or any given cloud provider and find exactly the hardware you are looking for, but it will noting kind of the upping the ante in the race to basically free storage between Google and Amazon and other competitors that it is and I think you see the pressure that puts on driving on the cost of SSD, flash, etc. So, I think that's a fun one to watch going forward.


Dr. Robin Bloor: Oh, absolutely correct, you know? I mean, I think there's one of the things that is actually happening is that the second wave is coming on. The first wave was this, you know, this wonderfully tailored services as long as, you know, it's a little bit Henry Ford; you can have it recolor as long as it is black, but, you know, even so, extreme reduction in certain kinds of costs of having the data center. Or, the second thing that happens is, having actually built these huge data centers out, they start these cloud operators, suddenly start discovering things that you can actually do. You couldn't do before because you didn't have the scale. So, there is, I think, a second wave which, to a certain extent, is going to make the cloud even more appealing.


Eric Kavanagh: Okay. Bra. Let me go ahead and bring Ashish as I am gonna go ahead and throw up your architecture slide here. We always love these kind of architecture slides that help people wrap their heads around what's going on. I guess, one thing that just jumps out at me is, of course, YARN. We talked about that on yesterday's briefing. YARN is not a small deal. For those of you who aren't familiar with this concept, it is "yet another resource negotiator." It's, really it's a very interesting development because what happened is in the Hadoop movement, YARN is kind of replacing the engine really, if you will. Our speaker from yesterday will refer to it as the operating system. It's like the new operating system of Hadoop, which of course, consists of the hybrid distributed file system underneath, which is basically storage when you get right down to it, and then MapReduce is what you used to have to use to use HDFS. MapReduce is an absurdly constraining environment in terms of how you get things done. So, the purpose of YARN was to make HDFS much more accessible and make the entire Hadoop ecosystem much more flexible and agile. So, Ashish, I am just gonna ask you in general, since you are mentioning YARN here, I am guessing that you guys are YARN compliant or certified. Can you kinda talk about what… how you see that change in the game for Hadoop and big data?


Ashish Thusoo: Yeah, sure. Absolut. So, I think, you know, there are two parts to… So, let me first talk about, you know, why YARN was done and then talk about how that potentially changes the game and what's fundamentally still is the same, you know, where it doesn't change the game. I think that's an important thing to realize also because many times you, you know, you get caught up on this hype of say, this is the new, shiny thing and, you know, everything is going to, you know, all the problems are going to go away and so on and so forth. So, but the primary thing is that, you know, the strength and the weakness of the MapReduce API was that it was a very simple API and essentially, any problem that you could structure around being a sorting problem could be represented in, you know, that API. And some problems are naturally, you know… can naturally be transformed into that and some problems, you know, you sort of, you know, once you have just MapReduce at your disposal then you try to fit into a sorting problem.


So, I think the latter is where YARN plays a role by expanding out those APIs by, you know, being able to compose, you know, maps and reductions and, you know, whole bunch of different types of APIs in terms of how the data can be distributed between these two stages, and so on and so forth. You just made that API that much more richer. So, now you have at your disposal, different ways of solving that same problem, right? So, you just don't have to, you know, be constrained by the API and the problem gets solved one way or the other like, you know, if you are, you know, trying to do an analytics, you know, workload, you can express that in MapReduce, you can express that in YARN. The big difference that happens, that starts to happen is, you know, in terms of, you know, the performance matrix that you start seeing, you know, once you start, say programming to YARN and in some cases, a newer set of things, for example, streaming analysis and so on and so forth starts becoming a reality when you start, you know, doing that, you know, those things in YARN.


So, those are the differences that, you know, that thing has brought into the ecosystem. I think it's much, the richness there is much more on the API side as opposed to it being another resource manager, especially in the cloud context. If you think about it in cloud context, the resource manager is actually your… the VMs that you bring up, you know, you have virt… you know, it's not necessarily… Again, this is a big difference between say, on-prem how you are running Hadoop clusters and how you are running in the cloud then, you know, you have like the constrained static set of machines, you want to distribute those machines amongst different resources and they were used for YARN there. But, in the cloud, you know, you can bring up machines left and right. And so, just from the perspective of being a resource manager, it probably doesn't have that, you know, that bigger need and specifically in the cloud, but from the perspective of providing these, you know, richness of APIs which allow you to, for example, the Hive is initiative they can now program Hive to not just to use MapReduce, but have much more richer plans of doing jobs and things like that. It brings those benefits to the ecosystem. I think that is where the true value of YARN belongs. And in the cloud context, definitely, it's not that interesting from the resource management point of view, but it's much more interesting in terms of what it enables other projects to do, in terms of, you know, workloads that now, it now can be used to be programmed on to your data or the previous workloads that can be done in a much more efficient way.


Eric Kavanagh: Right.


Ashish Thusoo: I had, you know, one more just, you know, adding to Mike, you know, there was another provocative thing which was said which is around and, you know, which was around, hey, treating the cloud as yet another data center. I think you… you know, that is one point of view which most companies, you know, look at and say, okay, you know, that's the easiest point of view actually to look at saying that, okay, you know, this is, you have bunch of machines on your, you know, you have compute, you have storage and you have networking on your on-prem data center and cloud provides the same thing out there. So, I am just going to do exactly the same thing that I am doing on my own on-prem data center and do the same thing in the cloud and viola - that's how it should work. What we have found out, you know, having been running the clouds for, the two clouds where, you know, you have the ability to provision VMs within a minute, the ability to use a highly scalable objects to store data and things like that. We have found that cloud actually, the cloud architecture and these inherent abilities actually enable different ways of doing things, you know, and this is what I have talked about in my slide as well, you know, the whole notion of… in just, you know, in… the perspective of just Hadoop, the whole notion of just running the static cluster versus on-demand dynamic clusters, that is something that you don't see happening in an on-prem data center, you know, versus, you know, true cloud where the, you know, there's a enough capacity to be able to support these types of workloads.


And so, I think there is definitely some shift needed. You know, the big fear for me is that if you just treat cloud as yet another data center, you actually… while you, you know, there are lot of other benefits, but there are lot of intrinsic benefits that you might ignore if you, you know, start doing that, security is another one, the way you deal with security and the cloud, there's a lot of differences in terms of how you would deal with, you know, in… from on-prem perspective and so on and so forth. Just wanted to add that in, from my perspective.


Eric Kavanagh: Sure. Ja. Inga problem. We have one attendee asking about various types of use cases like logistics and specifically HR, so I threw up this website of Workday, wanted to make a couple of comments on that, and then Gilbert, maybe I will bring you in to comment on the whole concept of architecture. So, in terms of HR, I actually heard a rather well, I will call it, let's say comment from an analyst a couple of months ago, a few months ago I suppose, about going to the cloud for Human Resources. I have been doing some research on this to know lot of HR-type functions are being outsourced to the cloud, certainly stuff like payroll is fairly easy to outsource these days, benefits programs and insurance, that kind of thing, but there is a real serious caveat to keep in mind and Gilbert, this is what I want you to comment on from an architectural perspective, which is you have to be very careful about when you are moving to the cloud for some kind of critical business service because you either want to be very strategic and very thoughtful, meaning you go through the process of making sure that you understand what's going on in the cloud and what's staying on-premise, and there is the folk from Attunity will tell you that truly one of the things they specialize in is making those connections such that they provide the kind of connectivity you need because what's happening with some organizations is they go and they will use Workday for example, to put some of their HR stuff to the cloud, but they don't do it all or they don't do enough or they don't think through it enough, and what happens then? Then they want to happen to manage the cloud environment and their original on-premises environment as well, which means, guess what? He just increased your cost, you doubled your workload and you created lots and lots of headaches for people, and that's usually when someone gets fired and then the guy who comes in has a real mess to clean up. So, you really do have to think through the architecture of the data and the systems and the processes and make sure you dot all your i's and cross all your t's and with that, I will throw it over to Gilbert for comments. I am guessing it will be with that, but maybe not.


Gilbert Van Cutsem: Alright. Ja. So, just another example of something similar, just yesterday happened to me. So, I lost one of my doctors because he went out of business. jag vet inte. It sounds amazing. He was a chiropractor and he went out of business. I don't know why, but, the thing was this - I have no chiropractor and I like to go to a chiropractor, you know, occasionally. So, I find a new one and it's close to, you know, close by and all that. It's all good. And so, they go, as usual, you have to do all the paperwork and let us know if blah, blah, blah. But, the good news is we have a new system because, you know, we're on the Web now, in the cloud. It's all cool. I go like, okay, you know, and they send me a link and I have to do all the paperwork online, which is fine and I put all kinds of things in there about, kind of secret like, you know, social security numbers and that type of stuff and who I am, how old I am… all my details. I put it all there and I submit because of course, I do believe in technology.


And then I walk up to the office, the next day for my first appointment and they go like, "Did you do the form?" I go like, "Yes, Ma'am, I did." "Okay. Then we will go and find it." I go like, "Well, I did do it." And she goes, "Yes, we know because you are the fifth person today to walk in, to walk up to me and complain about that's not finding the form." And I go like, "But, you can't be serious about that. This is pretty confidential information. Where is it?" This happened to me yesterday, yeah, which brings back the whole issue and the whole idea of who owns the data really, right?


I know you move to the cloud and people get onboard it into a new system like in this case, my chiropractor and they subscribe to a new system. It's in the cloud, it's all safe, it's fully multi-tenant, they used to have it on-premise system, all the data was moved into the new system, but now apparently, they can't get it out.


Eric Kavanagh: Yeah. That's not good.


Gilbert Van Cutsem: So, I don't know where my data is and assume she gets really mad, right? She goes like, "Oh, this is impossible. I pay you money and my customers are, my patients, sorry, are unhappy and with the data is gone, I wanna get away from you. I wanna go to a different system maybe also in the cloud, right?" How do you then move the data of your patients in this case, the data your business owns, to another system? How do I get it out first of all and then load it again? I am sure ETL in the cloud is an answer somehow and we have experts on that, but it's not that easy.


Eric Kavanagh: Yeah, but that's exactly right and folks, I threw up this other slide here, this other, another screen to show you where you can find the archives. So, anytime you want to check out - oh, there's the inside of our website, I don't want to show you that. So, here is the main website and on the right column here you can see a different show. So, TechWise is right here. You click on that and on these different pages where we will actually post the archives. So, we do archive all these webcasts.


Actually, I wanna throw back over to Mike, I suppose, and then also to Lawrence to kinda comment on this story that Gilbert just told. So, Mike, there is some, kind of, now this is kind of a small-business concern. You guys are more focused on big business, but nonetheless, if a large company who works with you and they want to go somewhere else, how do you manage that movement of the data and securing the data and so forth?


Mike Miller: Yeah. Det är en mycket bra fråga. It's one that used to come up a lot more often than it does now in sales calls, which I find to be an interesting anecdotal piece of evidence for a call. You know, I think that first of all, we are talking about a lot technologies, or at least employment models that are relatively new. This is very early in the cloud, right? We are talking about things like cloud, or in the case of data, we are talking about analytics services like Hadoop for databases and then NoSQL or NewSQL formats. You know, these are fundamentally new technologies and especially around things like, Hadoop and NoSQL, all of the ancillary services, the connectors, right, the… you know, if I want to find somebody that consults on Oracle, that's something I can find, but that entire ecosystem is just kinda spinning up right now.


So, it's getting easier day over day to say, okay, you know, give me a service that can read from 'x' traditional system, put it into Cloudant and do something with it and then put it back into 'y' traditional system, right? So, now they are very, you know, there are quite a few those things and it's actually more challenging, I think, for a typical user to understand what is the best choice, right, if I want to connect all the new technologies on-prem and then in the cloud.


So, I think as a cloud vendor, it's really on us to be very opinionated about that and to help walk users through the landscape of possibilities because the shift's a lot of new and I think that the average user, whether it's a CTO, CIO or whether it's actually developer, is coming up that learning curve fairly quickly. I think that a lot of the kind of baseline stuff is being worked out, cross-cloud connectors and, you know, taking away the really most basic worries about say, you know, bandwidth cost and whether or not you are going out on the wide area network versus staying on, you know, VPN the entire time. A lot of those things have been kinda abstracted away and what is the true promise of the cloud.


But, in general, I think you are also seeing, you know, that anecdote that we heard was, you know, something that is probably isomorphic to, you know, what will happen to your buying into a brand, you know, in a past lifetime, you know, what happens if that brand doesn't deliver, how much can I really trust that brand? I think you are seeing exactly the same thing happen in the cloud and, you know, I think that companies like Microsoft, Amazon, IBM and Google are, you know, very much stepping up and saying that there will at least be multiple pillars of trust and making sure that you are not going in with a company that's going to dry up and swallow your data, or worse, lose it or distribute it, right? And so, they are, at least, they are independable and they are anchoring, you know, the development of such ecosystem. But, I say to close, it's very early and a lot of that tooling is just getting started and, you know, I think you are going to see consulting services, you know, really putting a lot of focus on that in the very near term.


Eric Kavanagh: Yeah. That's a really, really good comment you just made there. I like that "pillars of trust" concept because the other thing to keep in mind here is you do once again have a number of fierce competitors vying for market share and for IT span, it's just like the old days all over again. Really, in the old days, by which I mean last year, you had IBM and Oracle and Microsoft and SAP and then Computer Associates and Informatica and all these companies, Teradata, etc. In the new world, now you have got, of course, Microsoft with their Du Jour, you have got Google, you have got Amazon Web Services, you know, you have Facebook in certain context. So, you have all these companies that are not necessarily so excited about working with each other, but you do have things like APIs. And so, one of the nice things that APIs really are crystallizing into the connectors that hold together the larger cloud, I suppose, and I want to throw up a slide for Lawrence to kinda comment on all this.


Yeah, Lawrence, obviously, you guys have specialized in the space for a while. So, I think you do have awesome advantage over maybe some newcomers. But, nonetheless, these are all very serious concerns because how data gets stored in the cloud is different than how it gets stored on-premise. Then I think that Mike makes a really good point that this whole space is just starting to take shape and it's gonna take a while for things to seriously fall into place and to crystallize. So, what's some advice that you have for companies that you… I guess, you basically concur with Mike, or what do you think?


Lawrence Schwartz: Yeah. I think it's, you know, what we see is when people are taking advantage of the cloud for a lot of use cases as compared to on-premise, you know, they are looking at kind of, you know, two different things. One is, they are looking at, you know, as we talked about this a little bit earlier, how do I… how does it incrementally add value to what I do, how do I, you know, how is it kind of an add-on? And so, you know, when back to when I talked about the Etix as a company where, you know, they are not moving all their operations over to Redshift, you know, yet per say, but they're saying, "I do a lot of work on Oracle, I wanna offer some of this to some kind of analytics from different environments, you know, kinda figure out, maybe do some sandbox stuff there, and, you know, and then learn about my business that way, and that way they can kind of carve out what they want, move it over there and do the work and, you know, it's less of a concern with moving, you know, everything over and all the records and whatnot. So, I think they look at that as one way that to take advantage of it with having less issues.


I think the other thing is people are also looking at these cases that are and aren't excellent fit for the cloud that are very, very hard to do in other ways. So, I will take another example, you know, we work with a company called, you know, iN DEMAND. They are video on-demand player. They do this work for Comcast and all of this and they will actually, you know, take the data that they are working with, they will take the media files and they will supply it to the cloud for doing their processing, do their processing there, and then they will consume it back for their on-premise customers. And then, you know, that gets upstairs to third parties that consume reviews. So, it's, you know, if you want to think about how the company is approaching it, it's, you know, how do I get my… how do I add value, how do I maybe not move the whole business at first, how do I get the right use cases, how do I add incremental value to what I do? And that helps kinda build about the confidence on what they are doing and as part of the process, and of course, you know, a key piece of that is, you know, making sure that they can do that securely and reliably and, you know, we make sure to the latest levels of encryption and other things to take care of that as much as we can on the transport side. But, that's how I think a lot of companies are approaching the problem.


Eric Kavanagh: Okay. Bra. And maybe Ashish, I will throw one last question over to you. I am just throwing up, actually, I like your architecture slide. Even this slide I think is pretty neat. So, one of the questions in, you know, HDFS of course, by design the default is to save every piece of data three times. You can adjust that, of course, you can make it twice, you can make it four times, that does provide some overhead over time, obviously, but it is a way of backing up data. Anyway, that was the whole idea, one of the key ideas, right, from HDFS originally is redundancy, is not wanting to lose data. I've kind of been wondering how that's going to affect things like replication servers, quite frankly, when Hadoop does that natively.


But, one of the attendees is asking - "Can you request physical backups like tape for your cloud data? I read of a company that had their cloud management console hacked and their data and online backups trashed."


You know, we are hearing about these breaches all the time, they are getting more and more serious, they are killing major brands like Target, like Home Depot, etc. So, security is an issue and backup and restore is an issue. Can you kinda talk about how you guys address things like backup and restore and security?


Ashish Thusoo: Yeah, sure. So, we… So, I will talk about that and talk about HDFS first. So, as far as Qubole is concerned, you know, we… since we work on the cloud, we use the objects store there to store data. So, again, this is one of the other key differences why, you know, big data service on the cloud becomes different from on-prem. On-prem, we have always talked about, you know, HDFS and so on and so forth, but if you go to the cloud, a lot of the data is actually stored in their object stores. For example, that could be an S3 on AWS, Google cloud storage on Google Cloud, on Google Compute Engine, and so on and so forth.


Now, many of these object stores have built-in capabilities of providing you things, you know, these object stores, by the way, you know, one of the big differentiators from real clouds to actually your own data center is the presence of these object stores and the reason that these object stores are cool pieces of technology, you know, they are able to provide you very cheap storage and along with that they are able to provide you things like, you know, having the ability to actually have a disaster recovery thing built in and, you know, as part of that interface, you don't have to think about it. And also, they have tiered, you know, there is tiering there as well. For example, S3 has high availability and it's online access, but it's much more expensive. It's more expensive than say, a glacier storage on AWS, which is low, you know, it gives you, you know, the turnaround time is like four hours or something like that and it's much cheaper. So, you start thinking of, you know, those types of services. I think cloud providers are essentially providing those types of services to augment the need for things like tapes and so on and so forth. And also, to provide you disaster recovery or rather, you know, replication built in into these systems so that, you know, you are protected from disasters, regional disasters and things like that.


So, that is what Qubole heavily, you know, depends upon and the great thing is that a lot of… all the cloud providers are providing this. These are fundamentally very difficult problems to solve and by being built into some of the object stores that these cloud providers provide, you know, that is one more additional reason of, you know, storing this data, you know, in some of these object stores and using the cloud for that as opposed to trying to, you know, figure out, you know, replication, running two Hadoop clusters across different, you know, regions and, you know, trying to replicate data from HDFS from one region to the other, which is doable, we did that a lot when I was back at Facebook running this stuff there, but, you know, fundamentally, the object stores in the cloud just made it that much more easy.


Eric Kavanagh: Okay. Great! Well, folks, we've burned through an hour and 15 minutes or so, a lot of great questions there and a lot of great presentations. Thank you so much to all of our vendors today and of course, to both of our analysts on the show today. A big thank you, of course, to Qubole, Cloudant and Attunity. We are gonna put the archive up at insideanalysis.com. I showed you where that goes, and big thanks to our friends at Techopedia as well.


So, folks, thank you again for your time and attention. This concludes Episode 3 of TechWise, our relatively new show. There is Episode 4 coming up pretty soon. It's gonna be on the big data ecosystem. So, watch for information on all that. And then till then, folks, thank you so much. We will catch up with you next time. Ta hand om dig. Bye-bye.

Molnkravet - vad, varför, när och hur - tekniskt avsnitt 3 avskrift